Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Med (Lausanne) ; 9: 973036, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2232857

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the outbreak led to the coronavirus disease 2019 (COVID-19) pandemic. Receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 is considered as a major target for immunotherapy and vaccine design. Here, we generated and characterized a panel of anti-RBD monoclonal antibodies (MAbs) isolated from eukaryotic recombinant RBD-immunized mice by hybridoma technology. Epitope mapping was performed using a panel of 20-mer overlapping peptides spanning the entire sequence of the RBD protein from wild-type (WT) Wuhan strain by enzyme-linked immunosorbent assay (ELISA). Several hybridomas showed reactivity toward restricted RBD peptide pools by Pepscan analysis, with more focus on peptides encompassing aa 76-110 and 136-155. However, our MAbs with potent neutralizing activity which block SARS-CoV-2 spike pseudovirus as well as the WT virus entry into angiotensin-converting enzyme-2 (ACE2) expressing HEK293T cells showed no reactivity against these peptides. These findings, largely supported by the Western blotting results suggest that the neutralizing MAbs recognize mainly conformational epitopes. Moreover, our neutralizing MAbs recognized the variants of concern (VOC) currently in circulation, including alpha, beta, gamma, and delta by ELISA, and neutralized alpha and omicron variants at different levels by conventional virus neutralization test (CVNT). While the neutralization of MAbs to the alpha variant showed no substantial difference as compared with the WT virus, their neutralizing activity was lower on omicron variant, suggesting the refractory effect of mutations in emerging variants against this group of neutralizing MAbs. Also, the binding reactivity of our MAbs to delta variant showed a modest decline by ELISA, implying that our MAbs are insensitive to the substitutions in the RBD of delta variant. Our data provide important information for understanding the immunogenicity of RBD, and the potential application of the novel neutralizing MAbs for passive immunotherapy of SARS-CoV-2 infection.

2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2155129

RESUMO

Since the beginning of the COVID-19 pandemic, considerable efforts have been made to develop protective vaccines against SARS-CoV-2 infection. However, immunity tends to decline within a few months, and new virus variants are emerging with increased transmissibility and capacity to evade natural or vaccine-acquired immunity. Therefore, new robust strategies are needed to combat SARS-CoV-2 infection. The viral spike composed of S1 and S2 subunits mediates viral attachment and membrane fusion to infect the host cell. In this process, interaction between the highly conserved heptad repeat 1 and 2 regions (HR1 and HR2) of S2 is crucial and for this reason; these regions are promising targets to fight SARS-CoV-2. Here, we describe the design and characterization of chimeric proteins that structurally imitate the S2 HR1 region in a trimeric coiled-coil conformation. We biophysically characterized the proteins and determined their capacity to bind the HR2 region, as well as their inhibitory activity of SARS-CoV-2 infection in vitro. HR1 mimetic proteins showed conformational heterogeneity and a propensity to form oligomers. Moreover, their structure is composed of subdomains with varied stability. Interestingly, the full HR1 proteins showed high affinity for HR2-derived peptides and SARS-CoV-2 inhibitory activity, whereas smaller proteins mimicking HR1 subdomains had a decreased affinity for their complementary HR2 region and did not inhibit the virus. The results provide insight into effective strategies to create mimetic proteins with broad inhibitory activity and therapeutic potential against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Proteínas do Envelope Viral/química , Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/metabolismo , Pandemias , Vacinas contra COVID-19 , Proteínas Recombinantes de Fusão
4.
Int J Biol Macromol ; 222(Pt B): 2467-2478, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2061253

RESUMO

SARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19. Although HR1 and HR2 have been described as transiently exposed during the fusion process, no significant antibody responses against these S2 regions have been reported. Here we designed chimeric proteins that imitate highly stable HR1 helical trimers and strongly bind to HR2. The proteins have broad inhibitory activity against WT B.1 and BA.1 viruses. Sera from COVID-19 convalescent donors showed significant levels of reactive antibodies (IgG and IgA) against the HR1 mimetic proteins, whereas these antibody responses were absent in sera from uninfected donors. Moreover, both inhibitory activity and antigenicity of the proteins correlate positively with their structural stability but not with the number of amino acid changes in their HR1 sequences, indicating a conformational and conserved nature of the involved epitopes. Our results reveal previously undetected spike epitopes that may guide the design of new robust COVID-19 vaccines and therapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/química , Proteínas do Envelope Viral/química , Epitopos , Vacinas contra COVID-19 , Glicoproteínas de Membrana/química , Proteínas Recombinantes de Fusão/genética
5.
Frontiers in medicine ; 9, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2034155

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the outbreak led to the coronavirus disease 2019 (COVID-19) pandemic. Receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 is considered as a major target for immunotherapy and vaccine design. Here, we generated and characterized a panel of anti-RBD monoclonal antibodies (MAbs) isolated from eukaryotic recombinant RBD-immunized mice by hybridoma technology. Epitope mapping was performed using a panel of 20-mer overlapping peptides spanning the entire sequence of the RBD protein from wild-type (WT) Wuhan strain by enzyme-linked immunosorbent assay (ELISA). Several hybridomas showed reactivity toward restricted RBD peptide pools by Pepscan analysis, with more focus on peptides encompassing aa 76–110 and 136–155. However, our MAbs with potent neutralizing activity which block SARS-CoV-2 spike pseudovirus as well as the WT virus entry into angiotensin-converting enzyme-2 (ACE2) expressing HEK293T cells showed no reactivity against these peptides. These findings, largely supported by the Western blotting results suggest that the neutralizing MAbs recognize mainly conformational epitopes. Moreover, our neutralizing MAbs recognized the variants of concern (VOC) currently in circulation, including alpha, beta, gamma, and delta by ELISA, and neutralized alpha and omicron variants at different levels by conventional virus neutralization test (CVNT). While the neutralization of MAbs to the alpha variant showed no substantial difference as compared with the WT virus, their neutralizing activity was lower on omicron variant, suggesting the refractory effect of mutations in emerging variants against this group of neutralizing MAbs. Also, the binding reactivity of our MAbs to delta variant showed a modest decline by ELISA, implying that our MAbs are insensitive to the substitutions in the RBD of delta variant. Our data provide important information for understanding the immunogenicity of RBD, and the potential application of the novel neutralizing MAbs for passive immunotherapy of SARS-CoV-2 infection.

6.
Rev Med Virol ; 32(5): e2347, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1782689

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. This disease has currently affected more than 346 million people and resulted in more than 5.5 million deaths in many countries. Neutralising monoclonal antibodies (MAbs) against the SARS-CoV-2 virus could serve as prophylactic/therapeutic agents in COVID-19 infection by providing passive protection against the virus in individuals. Until now, no Food and Drug Administration/European Medicines Agency-approved neutralising MAb against SARS-CoV-2 virus exists in the market, though a number of MAbs have been authorised for emergency use. Therefore, there is an urgent need for development of efficient anti-SARS-CoV-2 neutralising MAbs for use in the clinic. Moreover, neutralising anti-SARS-CoV-2 MAbs could be used as beneficial tools for designing epitope-based vaccines against the virus. Given that the target epitope of a MAb is a crucial feature influencing its neutralising potency, target epitopes of neutralising anti-SARS-CoV-2 MAbs already reported in the literature and reactivity of these MAbs with SARS-CoV-2 variants are reviewed herein.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , COVID-19/prevenção & controle , Mapeamento de Epitopos , Epitopos , Humanos , Fatores Imunológicos , Imunoterapia , Glicoproteína da Espícula de Coronavírus
7.
Eur J Med Chem ; 203: 112653, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: covidwho-645168

RESUMO

Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
Aglaia/química , Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fator de Iniciação 4A em Eucariotos/genética , Pneumonia Viral/tratamento farmacológico , Proteínas Repressoras/genética , Animais , COVID-19 , Fator de Iniciação 4A em Eucariotos/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa , Pandemias , Proibitinas , Proteínas Repressoras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA